Reachout Analytics

Corporate

Data Science

Learn from IIMC,ISI Alumini And  Industry Experts.

Learn from IIMC,ISI Alumini  Industry Experts with hands-on exercises & Project work. trained  on Python-R-SAS-SPSS-DataIKU-Tabluea -Qlik sence tools 

Module 1 : Statistics for Data Science
  • Descriptive Statistics
  • Data Type
  • Central tendency
  • Data Dispersion
  • Five Number Summary
  • Data Distribution
 
Module 2 : Mathematics for Data Science
  • Discrete Distributions
  • Binomial Distribution
  • Poisson Distribution
  • Continuous Distributions
  • Uniform Distributions
  • Normal Distributions
  • Exponential Distributions
Module 3 : Pre-processing data for Ml/AI
  • Normality with PP plot QQ plt
  • Chi-square, Test, Ztest, Ftest
  • Standardization
  • Scaling data with outliers
  • Standard Scaler ,Min Max Scaler
  • Log transformation
  • Sqrt transformation
  • PCA Dimension reduction
  • KNN Euclidean Distance
 
Module 4: Visualization Tableau Python
  • Introduction to Data Visualization
  • Introduction to Tableau
  • Basic Charts and Dashboard
  • Visual Analytics: Storytelling through
  • Bar chart, Pie chart, Scatter plot Tree
  • Bubble chart, Line chart
  • Histogram Boxplot
Module 5: Machine Learning /AI

Predictive Functional Models

    • Liner Regression,
    • Dummy Regression,
    • Transformed Regression,
    • Stepwise, regression
    • Backward, Forward Regression

Classification Models

    • Logistics Regression,
    • OrdinalRegression, Multinomial Regression,
    • Random Forestry,
    • Naive Bayes,KNN,SVM
    • PCA Dimension reduction
    • Cluster and profiling

 
Module 6: Artificial Intellegence

    •  ANN,
    • CNN,
    • RNN
    • Text Analytics
    • Sentiment Analysis

Module 7: Time series & Forecasting
  • Naive model
  • Moving Averages, Weighted Moving Averages
  • Simple Exponential Smoothing
  • Holt’s Exponential Smoothing
  • Holt-Winters Exponential Smoothing
  • Additive Models ,Multiplicative Seasonal Models
  • ARIMA Models
  • ARCH models
  • GARCH models
  • SARIMA
 
Module 8: Model Validation
  • Confusion Matrices
  • APE, MAPE, RMSEAIC BIC AICCROC, AUC,
  • Recall, precision specificity sensitivity ,
  • Classification Misclassification
 
Module 9: Business Analytics/Data Mining
  • Association Mining, Market
  • Basket Analysis
  • Recommendation System
  • Decision Tree, CHAID, CART,